Pointers to General Resources on FP Language
Compiler Construction

Ichinose Kaori

January 14, 2024

Compiling FP T —

Step 0: Learn FP

@ Practical Common Lisp

e On Lisp

e R°RS

o The Little Schemer

@ Structure and Interpretation of Computer Programs
o ML for the Working Programmer

e (CS3110

Compiling FP T —

TL; DW

https://matt.might.net/articles/cps-conversion/
https://matt.might.net/articles/compiling-scheme-to-c/
https://github.com/akeep/scheme-to-c/
http://churchturing.org/y/90-min-scc.pdf
https://www.youtube.com/watch?v=Bp89aBmotGU
https://www.youtube.com/watch?v=M4dwcdK5bxE
https://gist.github.com/nyuichi/1116686
http://scheme2006.cs.uchicago.edu/11-ghuloum.pdf
ChezScheme/IMPLEMENTATION.md
https://github.com/ichinosekaori/yass/ (possibly later)

Compiling with Continuations

Compiling FP T —y

https://matt.might.net/articles/cps-conversion/
https://matt.might.net/articles/compiling-scheme-to-c/
https://github.com/akeep/scheme-to-c/
http://churchturing.org/y/90-min-scc.pdf
https://www.youtube.com/watch?v=Bp89aBm9tGU
https://www.youtube.com/watch?v=M4dwcdK5bxE
https://gist.github.com/nyuichi/1116686
http://scheme2006.cs.uchicago.edu/11-ghuloum.pdf
https://github.com/cisco/ChezScheme/blob/main/IMPLEMENTATION.md
https://github.com/ichinosekaori/yass/

Goals

@ To demonstrate compiling a functional programming language
(Scheme) to a fairly low-level language (register VM bytecode)
@ Do it using a simple functional language

e Do it using a fairly conventional VM (with the ISA mimicking
commercial CPU designs, e.g. aarch64)

Compiling FP T —y

Overview of Scheme (1)

Primitive forms:

Variable reference

Quotation
Procedure call
Abstraction

Assignment

Conditional

Also derived forms programmed in the same language!
Some data usually not first-class are first-class: continuations,
environments.

Compiling FP T ——y

Overview of Scheme (2)

Primitive data structures:
@ The Cons
@ Vector
o (Bytevector)

Vectors are imperative arrays.
Data GCed.

Compiling FP T ——

Overview of the VM

lea
mov
Id, st
Idi

R4 < Rs0p Ry (or unary; for arithmetic and logical operations)

° jmp
o je
e int (“hypercalls™)

where R can be X for 64-bit integers or D for double-precision floats.
VM for avoiding outputing PE/ELF/Mach-O or amd64/aarch64 machine
code.

Compiling FP T ——

Merits of programming in Scheme

@ small base
@ extensibility

@ http://practical-scheme.net/docs/schemersway.html

Compiling FP T —

http://practical-scheme.net/docs/schemersway.html

Gaps between source and target languages

Nowhere to store computation state
No notion of abstractions in the target
Target works on numbers

No memory management in the target

Registers are limited in number

Compiling FP T —

Compiler organization

Scheme

closure conversionT

~

Primitive Scheme Known-adic

! |

Scheme form CPS

4\
CPS transform

Vv I

Unique-names —— Assignless

Closed ——— 3-address

\
register allocation
+

Bounded-free

!

VM bytecode

Labeled passes are more traditional passes found in compilers for

functional programming languages.

Compiling FP

Ichinose Kaori

January 14, 2024

10/26

Passes specific to Scheme

@ Macro expansion
@ Unsplice
@ Assignment conversion

@ Variadic function elimination

Compiling FP T ——y

Notes on continuations

@ They represent “rest of the computation”

@ Semantically is a function

Example

The continuation for the 2 in 2+ 3 is (- + 3), and it for the 1 x 2 in
(2x3)+(1x2)is (6+-). (assuming LtR evaluation order)

Compiling FP T

Rationale for CPS

Explicit continuations for capture
Continuations reified as functions for free

Less code complexity

All calls are in a tail context after CPS — space for control moved
into the closure for the continuation

More optimization opportunities

callcc(k, f) = ANK Ay.k(y), k)

Compiling FP T Y

CPS for the Lambda Calculus

Definition (Lambda terms)

tu=x|Axt|tt

Theorem
CPS(x, k) = k x
CPS(Ax.t, ¢) = c(Ak-Ax. CPS(t, k))
CPS(t1(t2), k) = CPS(t1, Ar1. CPS(t2, Ara.ri(k)(r2)))

Compiling FP T ——y

Generalizing

Scheme has more primitives, including quotations, conditionals, and
multiple arguments.

CPS('a, k) = k('a)
CPS(if c then a else b, k)
= CPS(c, Ax.(if x then CPS(a, k) else CPS(b, k)))

For generalizing to n-ary functions you need to bind all n operands to
names, then apply.

Compiling FP T Y

Hidden code blowup!

CPS(if ¢ then a else b, k)
= CPS(c, Ax.(if x then CPS(a, k) else CPS(b, k)))

k appears twice — bind it before continuing!

Compiling FP T

CPS TL; DR

Copy from https://matt.might.net/articles/cps-conversion/.

The article has a fully-featured CPS transform implementation for Scheme.

Compiling FP T ———

https://matt.might.net/articles/cps-conversion/

Closure conversion rationale

Example
Consider the (different) return values of Ax.\y.x+ y. J

func : code x any list

Compiling FP T ——

Finding free variables of Lambda Calculus terms

Theorem
FV(x) = {x}
FV(t1(t2)) = FV(t1) U FV(t2)
FV(Ax.t) = FV(t) \ {x}

No extensions to rules necessary for Scheme extensions to the lambda
calculus.

Compiling FP T ——

Closure conversion

cevt(T = Ax.t)
= mkc(Ac.Ax. cevt(t)[Vs € FV(T).s — cref(c, s)], FV(T))

cevt(ti(t2)) = (As.s(s) cevt(tn)) cevt(tr)

Compiling FP T —

Embedding Scheme data into machine words

e tagged union (portable)
e tagged pointer (used by Chez)
e NaN boxing (used by V8)

Compiling FP T —y

Tagged pointers

o A word is 8-bytes long

@ Pointers to 8-byte-aligned things will have 000 as their LSBs

@ Use different values of the 3 LSBs to differentiate between types
See ChezScheme/IMPLEMENTATION.md.

Compiling FP T —

https://github.com/cisco/ChezScheme/blob/main/IMPLEMENTATION.md

Managing memory

Start simple: use Cheney's semispace algorithm

Ichinose Kaori

mark-sweep
mark-compact
mark-copy
generational?
concurrent?

parallel?

Compiling FP

January 14, 2024

23/26

Register allocation

@ Best: do whole-program RA and do coalescing (since control flow is
broken up into slices after the CPS pass)

@ Worse: whatever correct.

Compiling FP T —y

Ideas for more work

More refined types

Evaluation and environments

Light processes

Pattern matching

Multi-dispatch methods

Staged and safe code

FBIP

Zombie!

Native backend

More advanced RA/GC/optimizations

Compiling FP T —y

Slides at
https://ichinosekaori.github.io/compiler-pointers.pdf

Compiling FP T

https://ichinosekaori.github.io/compiler-pointers.pdf

